
AI Chips: Blast From the Past

GPUs are FIRE 🔥
https://www.youtube.com/
watch?v=YGpnXANXGUg

https://www.youtube.com/watch?v=YGpnXANXGUg
https://www.youtube.com/watch?v=YGpnXANXGUg

500k USD / DGX H100
30k USD/Card
Almost a million H100s ordered  
for the next year

AI runs on GPUs

• AI = matrix multiplications, which is massively parallelizable

• GPUs are great at parallel programming

• CPU < 32 cores/threads, GPU> 4000 cores/threads!

• CPU is 10x slower, at least

• Impractical to train or even run any reasonable AI model outside GPUs and
ASICs

AI is compute hungry

https://www.nature.com/articles/d41586-023-00641-w

Brief Review of Computer
Architecture

Von Neumann Architecture
Memory has both data and instructions

Instruction Set
Language your CPU understands

Memory Hierarchy
Because you have limited memory

Compilers
Convert high-level programming language to CPU

•

GPU Architecture
GPU = Multi core processors with hardware support for multi threading

Note Memory Hierarchy
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061892

CUDA Programming Model

• Programming model mapped to
architecture: threads, blocks and grid

• Memory hierarchy is mapped

• Shared Memory per SM (block) acts as
configurable cache

• Global DRAM shared across the GPU

https://developer.nvidia.com/blog/even-easier-introduction-cuda/

Lisp

Original ‘AI’ Programming language

Dartmouth Workshop (1956)
Foundational Event for AI

McCarthy Invents LISP
Key Features

• Lisp language was designed in 1960 by John McCarthy

• LISP = list processing. Everything is a list

• Symbolic programming: manipulate symbols rather than numbers

• Recursive: self-referential functions

• Code is Data: Manipulate code as if it is data

• Macros: Create your own syntax by ‘expanding’ macro

• Still in use today

Lisp Example Programs

> (+ 2 2) => 4

> (- (+ 9000 900 90 9) (+ 5000 500 50 5)) => 4444

> (append '(Pat Kim) '(Robin Sandy)) => (PAT KIM ROBIN SANDY)

> (defun last-name (name)

 "Select the last name from a name represented as a list."

 (first (last name)))

Many Basic Programming Concepts Were Invented

• Conditionals: if else

• First class functions: functions are also objects

• Garbage collection: leave it to another program to remove old data

• Led to object oriented programming

• Easy to extend and create new syntax: Lot of dialects such as scheme,
common lisp etc

Early AI Programs

• General Purpose Solver: search algorithm to search for solution given ‘any’
problem

• Eliza: Original Chatbot! Simulate speaking with a psychoanalyst

• MYCIN: Expert system to diagnose an infection and recommend antibiotics

• Automatic Theorem Prover: As in name. Eg. type checking!

• Most of this is coded up in Lisp or related languages

• Used to be called ‘Symbolic AI’ or ‘Good Old Fashioned AI’

Symbolic AI vs Neural Networks

• Was dominant stream of AI

• So dominant that neural networks got relegated into no funding

• Geoff Hinton, Lecun and others persisted in believing in neural networks
despite this

• Back propagation was the break-through for multi-layer neural networks

• Now Symbolic AI is relegated to no funding. Opportunity? :P

Lisp Chips

Lisp Implementations

• Back then, LISP was so resource
intensive that most people couldn’t use it

• So, people tended to use Fortran/ALGOL
instead more -> Later became C

• First implementation of lisp was on
IBM704 - interpreter

• In 1962, compiler was written using
above interpreter in lisp itself!

Lisp Chips

• Computer designed to use LISP as their main
programming language

• ‘High-level language computer architecture’

• Basically CPUs with instruction set very similar
to LISP

• Basically LISP Accelerators

Why relevant now?

• Moore’s law is ending

• Exponential CPU speed up is no more guaranteed

• Need special purpose hardware architectures like GPUs to speed up

• Design methodology is very interesting and is top down than bottom up

• Software-hardware co-design

• Design tools are also interesting

• GPU: CUDA :: LispChip : Lisp

Scheme-79 Chip

• Designed by a student for his course project, Guy Steele

• Instructor Gerry Sussman invented scheme - simplified version of Lisp

• He was also interested in computer aided design tools for engineers

• So they used very interesting methods to design this chip

How Scheme-79 Works

• Think of it as hardware interpreter of lisp

• Interpreter basically checks for current
op and runs the operations recursively

• Machine language in scheme-79 is built
using a typed pointer

• Lisp is converted to ’S-Code’ which is
sort of machine language

• Type in pointer is similar to opcode

Separate garbage collector

• Data, programs and stack are allocated from heap memory

• Hardware interpreter is not interested in how memory is allocated

• But memory is finite - so we need garbage collection of useless objects

• So separate storage management system

• Implemented as separate state machine

Synthesis of the chip
Things get even more interesting

• Because lisp is so extensible, the design of the chip was also done in Lisp!

• Two languages/dialects were designed:

• ‘Micro-lisp’ suitable for expressing low-level S-code

• Layout language to actually ‘artworks’ for burning on chips using
lithography

• A compiler was written to convert micro-lisp to layout.

• Essentially, use lisp to compile itself into hardware!

Interesting tidbits about Scheme-79

• There’s no ALU in scheme-79 chip! Can still do symbolic derivatives!

• Still has some “arithmetic” using list addition and deletion as ‘number system’

• Garbage collector is basically interface b/w this arithmetic and standard
ordered numbers of memory

• Interesting way to look at this architecture: everything above a boundary is a
processor which treats everything below boundary as a memory system

• Layered approach to chip design?

Fun Project

• Implement scheme-79 in a modern FPGA?

• Use CIRCT/Calyx in place of layouts to generate verilog

• Use MLIR sort of approach for transforming b/w representations

