-

13]

ARRERRR
o
il

IR\ E

." '.

4t the era of pr

1 '

 Source GPU Stacks
dberdommance‘- ot a1] 1 T

Outline

* Proprietary dominance
« Computers

e Break the wall

Proprieta iInance

465.07 uso

+402.04 (637.85%) 4 past 5 years

Closed: Aug 1, 7:59PM EDT - Disclaimer
After hours 461.95 -3.12 (0.67%)

1D 5D 1™ oM YTD 1Y oY

500 37.66 USD Mar 8, 2019

Max

400
300
200
100
0 | | | |
2020 2021 2022 2023
Open 464.60 Mkt cap 1.15T CDP score B
High 469.00 P/E ratio 241.70 52-wk high 480.88
Low 460.27 Div yield 0.034% 52-wk low 108.13

History of Al

Turing test invented First AI winter Second Al winter
1980 2012
1950 1973 1988 2019
Boom times Deep learning
revolution
Open research and open .
P P Well, this hackathon
source code
Huge amount of data Opensource ImageNet

Huge amount of compute GPUs

It all started with AlexNet

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVYRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which 1s considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists

~Neural Information Processing Systems
hitps://proceedings.neurips.cc > paper » 4824-i...

ImageNet Classification with Deep Convolutional Neural ... of five convolutional layers, some of which are followed by max-pooling layers,
by A Krizhevsky - Cited by 119294 — We trained a large, deep convolutional neural network to and three fully-connected layers with a final 1000-way softmax. To make (rain-
classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the... ing faster, we used non-saturating neurons and a very elficient GPU implemen-

tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
Ye ar 201 2 ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

compared to 26.2% achieved by the second-best entry.
100k citations!

9 pages

- \ ‘J_‘
5\ N < 3 AN \ I \
__________ N RSN 5 N, \ 4 f \
5 ; N o "4;;~ N\ 3 AT ‘ / \ \
i . ‘ 192 192 128 / 20a8 \ / 2048 \dense
48 128 \ L o .. -\‘\ — \
5% N \) A \\
93 NI \13 13 / \\ / \
5\ | 2 B .l'"’-‘»\ [\ 30 / ¥ \
s | 3 l\ - EENER 3‘_ . L » |—»
- = IR dense | |dense
. 3\\ e \ # ‘_‘:,.13'— \ 13
3 \ \ 1000
192 192 1258 Max 57 -
Max 128 Max pooling 2048
pooling pooling
18

https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlf _T

Al runs on GPUs

* Al = matrix multiplications, which is massively parallelizable
 GPUs are great at parallel programming

 CPU < 32 cores/threads, GPU> 4000 cores/threads!
 CPU is 10x slower, at least

* Impractical to train or even run any reasonable Al model outside GPUs and
ASICs

CUDA is de facto standard

 CUDA is C-like language to program a GPU

* All Al programs are written in Nvidia’s GPGPU language CUDA
* Works only on Nvidia GPUs

* Therefore Al stuff runs only on Nvidia GPUs

* Al hardware is monopoly because of lack of good compillers!

AlexNet was done in CUDA of course

contain enough labeled examples to train such models without severe overnting.

The specific contributions of this paper are as follows: we trained one of the largest convolutional
neural networks to date on the subsets of ImageNet used in the ILSVRC-2010 and ILSVRC-2012
competitions (2] and achieved by far the best results ever reported on these datasets. We wrote a
highly-optimized GPU implementation of 2D convolution and all the other operations inherent in
training convolutional neural networks, which we make available publicly’. Our network contains
a number of new and unusual features which improve 1its performance and reduce its (raining lime,
which are detailed in Section 3. The size of our network made overfitting a significant problem, even
with 1.2 million labeled (raining examples, so we used several effective techniques [or preventing
overlitting, which are described in Section 4, Our final network contains five convolutional and
three fully-connected layers, and this depth seems to be important: we found that removing any
convolutional layer (each of which contains no more than 1% ol the model’s parameters) resulted in
inferior performance.

In the end, the network’s size is limited mainly by the amount of memory available on current GPUs

Project

Source

Issues

Wikis

Downloads

@ cuda-convnet

High-performance C++/CUDA Implementation of convolutional neural

networks

Note July 18, 2014: * |I've released an update to cuda-convnet,
called cuda-convnet2. The two main new features are faster
training on Kepler-generation GPUs and support for multi-GPU
fraining.

This is a fast C++/CUDA implementation of convolutional (or more
generally, feed-forward) neural networks. It can model arbitrary
layer connectivity and network depth. Any directed acyclic graph
of layers will do. Training is done using the back-propagation
algorithm.

Fermi-generation GPU (GTX 4xx, GTX 5xx, or Tesla equivalent)
required.

Documentation

« Compiling — how to check out and compile this code.
Data -- what kind of data this net can train on.
LayerParams — how to specify an architecture for the net.
NeuronTypes - types of hidden unit nonlinearities.
TrainingNet — how to train the net.

Options - the command-line arguments that the net takes.

ViewingNet -- how to look inside the checkpoints saved by
the net.

CheckingGradients -- how to numerically test the gradients
for correctness.

PyTorch dominates Al frameworks
Written in C++ & CUDA but with Python API

The main structure of PyTorch in a architectural view is shown in the figure below.

torch torch.autograd torch.nn ' torch.multiprocessing = torch.utils

H Python library components

0 arapP™o Python AP
\ \ \ oo
Autograd ATen JIT
C++ C++ C++
* T s

| | o2

~ TH THC 7S
C CUDA s

i,
| | "
THNN THCUNN
— C CUDA _

Architecture. Inspired by °

https://se.ewi.tudelft.nl/desosa2019/chapters/pytorch/#fn:3

Nvidia H100 GPUs: Supply and Demand

July 2023 - Updated: August 2023 GPU Bx NVIDIA H100 Tensor Core GPUs

GPU memory 640GE total

Performance 32 petaFLOPS FP8

NVIDIA® NVSwitch™ 4x

System power 10.2kW max
usage
CPU Dual Intel® Xeon® Platinum 8480C Processors
112 Cores total, 2.00 GHz (Base),
3.80 GHz (Max Boost)
Is t WM ere rea] [/A o System memory >TB
L ICIC 1 CAIlY QL

Networking Ax OSFP ports serving 8x single-port NVIDIA

— , ConnectX-7 VPI
o > Up to 400Gb/s InfiniBand/Ethernet

2x dual-port QSFP112 NVIDIA ConnectX-7 VP!
> Up to 400Gb/s InfiniBand/Ethernet

-

.
<. L
Ot .

en

Management I0Gb/s cnboard NIC with RJ45
network 100Gb/s Ethernet NIC
Host baseboard management controller
How Many GPUs Are Needed? (BMC) with RJ45
Storage 0S: 2x1.22TB NVMe M.2

o GPT-4 was likely trained on somewhere between 10,000 to 25,000 A100s.2Y

» Meta has about 21,000 A100s, Tesla has about 7,000 A100s, and Stability Al has
about 5,000 A100s.?!

« Falcon-40B was trained on 384 A100s.%2

« Inflection used 3,500 H100s for their GPT-3.5 equivalent model.23

Internal storage: Bx 3.84TB NVMe U.2

500k USD / DGX H100

30k USD/Card

Almost a million H100s ordered
for the next year

Fonisize Ssigle

P L) ol

sear intosh

L
L)

il
]

Computer Architect

‘- .-

von Neumann architecture

ol Yom
Contyoller - j 73 [

4 ’; a ;
r —

— !

“ =

—

¥
X

——
—
C——
—
—
—
—
-
| —

.
z
)
% t.‘
| 2
.V
_‘?’ :

Nemo'f& Yot progTem And
Aata s Srord
Eo Jc (Gev

https://chsasank.com/lim-system-design.html

Basis of all Computers

g
¢
E
s
b
8

} 2N fa
-

DJSDYDS :-:;

Yivs

18- 00
H= AELIQN

Loy

SCLYEH
LB

SLOT '€DY C,Pu

et VLS PR
TN AL

!
por O
OCHE

o oo (| IR, : Méwv‘?
Y R (2 -

> Y./
) '

Basis of all GPUs

e

ur‘-’ﬂﬂﬂﬂ.ﬂ
= *3d 38 O o

FiH D DN Al N LE LT LR
ot m— A

AVIBIA

IS THIWAN 123840 JERWIY o
NeH3 10, 01K

12310

cur

cis
C1d%

T EE 11

034 L1500y
{e MNRYS

B335 '-.'

*ofie
s ~“ 410

-
-
L)
L
-~
-
-
-~
-
~
*

'..‘ ..0--.
o1 S [I .. AR
KERIORISFI-FE03 - : : 8

4
e T_i"{l o "a‘ﬁsnnnﬂl‘ 1

180+12083-1(02.8D! @ nV|D|A°

Asprass 4 o -—h 4w Aeda as 4A» 48 A8 b 4a 4 -e

i

https://simple.wikipedia.org/wiki/Video_card

GPU Architecture

GPU = Multi core processors with support for hardware support for multi threading

C Register File

(32,768 x 32bit)

i

Note Memory Hierarchy

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061892

Main

Memory 1

Copy processing deta

4

Processing flow
on CUDA

Memory
for GPU

Copy the result)

CPU

(Instruct the processing)

GPU

[Execute parallel
| in each core

(GeForce 8800)

Optimal hardware design

for vkl
W?RK Y’\Y}/ D‘F 1250
W7 Py Yom
(Q’"—Yb l '&'f ’ £ Fr,j ' J-;’oo
and enecmtss 1€ o0
i 1 date o s LLAMK 7B T
N T (patthsiye =)
4»-130
J(2
Wemov Loth VTOJTam and 5/ e
(M d or ppog
1 data Shorr i 2 ol)
t‘Jc thev s THog (wyvidla @707)
L \ R

13 / >
3 0//—20/‘.((A—,ﬂp@ A7 /’]ﬂ){)

0\0 'S i e 17 \0“\\
1 4“ 1 P

LA?f/C’/ /’7}) }Ooﬂﬁﬂ/j 17 4/:'/0/?5 [K/J/‘g’)

Optimal FLOPs/BW = Batch Size (ot

FLOPs/BW is getting worse

We need newer designs for inference

farve s Jr/‘ﬁ
Eﬂ' o0y, ’Z)NIL guo'yjed'/'

Machine balance
(floating point operations per read)

100

< Severe] Z
imba\onced
w104
%IE : e
=3 frodenate f

5 Im balanced

1 : : ‘.‘ ‘. .- : | \- | ~ Py :
il @" | | o
/é / e°‘°/ | T la:«\zse;n .

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025
year

Al Chips

Cambrian Explosion

9 Sasank Chilamkurthy
<« Pp @sasank5l

Edge vs Cloud.
Open vs Closed.

. Nathan Odle £ @mov axbx - Apr 10
Caption Contest

Cloud TPU

» -~ il
: 0os9e AN W=
-

! oeoece [AeE
big
‘ .

e

- -

B ©909¢

6(')6(7)6
-~

How to support newer architectures?

Common intermediate representation for all programming languages and hardware

W L LM

: \\\‘“.—— 0 /‘o

“'-/“ 0 0
e S
= 4.\ ’ / M o
| &

m
v m herd tJVVE’ " profyemm, J e

7 r‘ﬁj Yamm'y Mh fethes | f‘\jl&? - rvn rethn o)
o-guegor

O”n\] n+m Wf;i(efn

AR Cemp"evs ﬂﬁw\'\«l S

https://aosabook.org/en/v1/llvm.html

Kernels are hard

Another point of lock-in

15 1

GFLOPS/sec.

—
-
T

-5~ OLD

11— ALCE]A 8Lk G
(:[:h\j:| -"'%?:‘%[; 1k;]. | J :] —;é—luEw/k

H_ AR & L ow k%
N Ay

x K ¥ Ty

tlrnd o{)h‘m f e

3 for Loop!
r.

G-B-g-0-g- 0T TG0 -0-0-0-0-0- 0GB -F-0-]

200 400 600 800
m=n=K

SYCL: A Portable Alternative to CUDA

Standard, not implementation

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

SYCL

Source Code

SYCL enables Khronos to influence
ISO C++ to (eventually) support
heterogeneous compute

\

intel ¢ codeplay’ C ComputeCpp
= ~ R
B, DPC++
oneAPI Uses LLVM/Clang
Part of oneAPI 8 2 . E
~ 4'??7%"/
Any CPU i ¥ | @DZ
OpenCL nviDia.
"CUTA. | NVIDIA GPUs
NVIDIA . O/ BLV
GPUs RO pen
ICﬁni (S IR.
P AMD GPUs Intel CPUs
Intel FPGAs
L —— AMD GPUs
Intel CPUs (depends on driver stack)
Intel GPUs Arm Mali
Intel FPGAs IMG PowerVR

Renesas R-Car

' UNIVERSITAT
@tlveCpp HEIDELBERG

AdaptiveCpp
Multiple Backends

|
oY) |
OpenMP \ _s NVIDIA
e CUDA
Any CPU \ %:
-
\ &
\
RO Level Zero
Cm
Intel GPUs
AMD GPUs

SYCL Works Great

Matrix

GPU

Nvidia GTX
1650M

AMD Van
Gogh

Intel Arc 770

https://chsasank.com/portblas-portable-blas-across-gpus.html

Size

1024

2048

4096

1024

2048

4096

1024

2048

4096

PortBlas
GFLOP/s

1284

2299

2475

451

911
989
7210
8473

8408

Vendor Libraries
GLOP/s

1483

2700

1889

889

639
1199
5271
1511

16425

PortBlas/
Vendor

87 %

85%

131%

51%

132%
82%
137%

561%

51%

Sasank Chilamkurthy
< @sasank51

, In search for portable CUDA alternative, | found that LLVM doesn't really
o eS n WO r cut it as intermediate representation. Read why in my latest post:

chsasank.com/intermediate-r...

For GPUs [ntermediate Representations for
GPUs: LLVM Does Not Cut 1t

Sasank Chilamkurthy | 05 April 2024 | 11 minutes to read.

» Compilers are like dragons, and wrapping my head around their complexity has
been challenging, Adding to the challenge, 've chosen a particularly tough topic
within this complexity: AI compilers. What sets AT apart are GPUs and matrix
multiplication kernels. In this post, I will talk about compilers for GPUs and will
leave matrix multiplication kernels to another post. In this post, we will examine

Ot Pff{:a bl e LLVM compiler framework for CPUs and contrast it with for GPUs. We’'ll show

that LLVM is not a reasonable TR for GPU.
‘e Cod€ : (: | |
Pevice K) (A(N(ag-fﬁqu - How LLVM works

\ h'kr;n 5 \Z/S) A good review of architecture of LLVM can be found in the book The Architecture of
l Open Source Applications. I reproduce a key diagram from the LLVM chapter below for

CO ™o I e reference:

c + -[- Clang C/C++/CbiC LLVM

L Host cede _5 ToOE Wkle WU, pm— L

Haskell - GHC Frontend L

ol d'm(?ﬂ) s i Aot Bechans

- XBS

LLVIM
PowerPC Backend | PowerPC

- ARM

3:31 PM - Apr 5, 2024 - 29.3K Views

il View post engagements

O 1 1153 Q 272 [] 215 T,

GPL License

Free the software

https://twitter.com/elonmusk/status/1765387202953937224

10119 € =5l 98%8

Compiler Discussion |1
+1(315) 706-2771, +91 72767 78292, ..

6

00

Manasij Mukherjee PhD

| guess more than gains it enables you to keep
software portable and programming to familiar
paradigms instead of having to learn new vect...

Potability was one of the main reason
why programing languages were originally

| think we're in Fortran days again. We
don't have software portability for Al chips

i 227 W/
o ~ Vedant Paranjape +91 70204 02120
You

| think we're in Fortran days again. We
don't have software portability for Al
chips yet.

MLIR is trying to solve that problem.

Manasij Mukherjee PhD

~ Vedant Paranjape +91 70204 02120

v MLIR is trying to solve that problem.

It feels like all the interesting users of %8
MLIR are closed source. 1970 [

L

—— St —— . e e esemm e i

Manasij Mukherjee PhD

It feels like all the interesting users of
MLIR are closed source.

This is why GPL is important | guess :
(12:29

o~

\ A v

@Nessage) €@ [o

® Elon Musk & B @elonmusk - Mar 6

— — R— - " — . R, -
- - - ., - -

‘ : :..ﬁ-‘ ‘[_." . .,' ") T
." - '_.."t‘- T ’ .
Y |hats an
-/‘ " o'd P"\Oto ,{‘:“. o0t o : - y

r-

"=
|

-

¥)e .
A

Q 7« 13 19K Q 317K il 48M

| build hardware

E 3 VON NEUMANN
=3 Al

